Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Reconstruct Kaplan--Meier Estimator as M-estimator and Its Confidence Band (2011.10240v1)

Published 20 Nov 2020 in stat.ME

Abstract: The Kaplan--Meier (KM) estimator, which provides a nonparametric estimate of a survival function for time-to-event data, has wide application in clinical studies, engineering, economics and other fields. The theoretical properties of the KM estimator including its consistency and asymptotic distribution have been extensively studied. We reconstruct the KM estimator as an M-estimator by maximizing a quadratic M-function based on concordance, which can be computed using the expectation--maximization (EM) algorithm. It is shown that the convergent point of the EM algorithm coincides with the traditional KM estimator, offering a new interpretation of the KM estimator as an M-estimator. Theoretical properties including the large-sample variance and limiting distribution of the KM estimator are established using M-estimation theory. Simulations and application on two real datasets demonstrate that the proposed M-estimator is exactly equivalent to the KM estimator, while the confidence interval and band can be derived as well.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.