Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Asymptotic properties of parametric and nonparametric probability density estimators of sample maximum (2206.04868v1)

Published 10 Jun 2022 in math.ST and stat.TH

Abstract: Asymptotic properties of three estimators of probability density function of sample maximum $f_{(m)}:=mfF{m-1}$ are derived, where $m$ is a function of sample size $n$. One of the estimators is the parametrically fitted by the approximating generalized extreme value density function. However, the parametric fitting is misspecified in finite $m$ cases. The misspecification comes from mainly the following two: the difference $m$ and the selected block size $k$, and the poor approximation $f_{(m)}$ to the generalized extreme value density which depends on the magnitude of $m$ and the extreme index $\gamma$. The convergence rate of the approximation gets slower as $\gamma$ tends to zero. As alternatives two nonparametric density estimators are proposed which are free from the misspecification. The first is a plug-in type of kernel density estimator and the second is a block-maxima-based kernel density estimator. Theoretical study clarifies the asymptotic convergence rate of the plug-in type estimator is faster than the block-maxima-based estimator when $\gamma> -1$. A numerical comparative study on the bandwidth selection shows the performances of a plug-in approach and cross-validation approach depend on $\gamma$ and are totally comparable. Numerical study demonstrates that the plug-in nonparametric estimator with the estimated bandwidth by either approach overtakes the parametrically fitting estimator especially for distributions with $\gamma$ close to zero as $m$ gets large.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)