Papers
Topics
Authors
Recent
2000 character limit reached

Optimizing Approximate Leave-one-out Cross-validation to Tune Hyperparameters

Published 20 Nov 2020 in stat.ML and cs.LG | (2011.10218v1)

Abstract: For a large class of regularized models, leave-one-out cross-validation can be efficiently estimated with an approximate leave-one-out formula (ALO). We consider the problem of adjusting hyperparameters so as to optimize ALO. We derive efficient formulas to compute the gradient and hessian of ALO and show how to apply a second-order optimizer to find hyperparameters. We demonstrate the usefulness of the proposed approach by finding hyperparameters for regularized logistic regression and ridge regression on various real-world data sets.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.