Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Stochastic Tropical Cyclone Precipitation Field Generation (2011.09918v1)

Published 19 Nov 2020 in stat.AP

Abstract: Tropical cyclones are important drivers of coastal flooding which have severe negative public safety and economic consequences. Due to the rare occurrence of such events, high spatial and temporal resolution historical storm precipitation data are limited in availability. This paper introduces a statistical tropical cyclone space-time precipitation generator given limited information from storm track datasets. Given a handful of predictor variables that are common in either historical or simulated storm track ensembles such as pressure deficit at the storm's center, radius of maximal winds, storm center and direction, and distance to coast, the proposed stochastic model generates space-time fields of quantitative precipitation over the study domain. Statistically novel aspects include that the model is developed in Lagrangian coordinates with respect to the dynamic storm center that uses ideas from low-rank representations along with circular process models. The model is trained on a set of tropical cyclone data from an advanced weather forecasting model over the Gulf of Mexico and southern United States, and is validated by cross-validation. Results show the model appropriately captures spatial asymmetry of cyclone precipitation patterns, total precipitation as well as the local distribution of precipitation at a set of case study locations along the coast.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.