Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Meta-Algorithm Selection (2011.08784v1)

Published 17 Nov 2020 in cs.LG and stat.ML

Abstract: Instance-specific algorithm selection (AS) deals with the automatic selection of an algorithm from a fixed set of candidates most suitable for a specific instance of an algorithmic problem class, where "suitability" often refers to an algorithm's runtime. Over the past years, a plethora of algorithm selectors have been proposed. As an algorithm selector is again an algorithm solving a specific problem, the idea of algorithm selection could also be applied to AS algorithms, leading to a meta-AS approach: Given an instance, the goal is to select an algorithm selector, which is then used to select the actual algorithm for solving the problem instance. We elaborate on consequences of applying AS on a meta-level and identify possible problems. Empirically, we show that meta-algorithm-selection can indeed prove beneficial in some cases. In general, however, successful AS approaches have problems with solving the meta-level problem.

Citations (5)

Summary

We haven't generated a summary for this paper yet.