Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Client Selection for Federated Learning with Volatile Clients (2011.08756v3)

Published 17 Nov 2020 in cs.LG and cs.DC

Abstract: Federated Learning (FL), arising as a privacy-preserving machine learning paradigm, has received notable attention from the public. In each round of synchronous FL training, only a fraction of available clients are chosen to participate, and the selection decision might have a significant effect on the training efficiency, as well as the final model performance. In this paper, we investigate the client selection problem under a volatile context, in which the local training of heterogeneous clients is likely to fail due to various kinds of reasons and in different levels of frequency. {\color{black}Intuitively, too much training failure might potentially reduce the training efficiency, while too much selection on clients with greater stability might introduce bias, thereby resulting in degradation of the training effectiveness. To tackle this tradeoff, we in this paper formulate the client selection problem under joint consideration of effective participation and fairness.} Further, we propose E3CS, a stochastic client selection scheme to solve the problem, and we corroborate its effectiveness by conducting real data-based experiments. According to our experimental results, the proposed selection scheme is able to achieve up to 2x faster convergence to a fixed model accuracy while maintaining the same level of final model accuracy, compared with the state-of-the-art selection schemes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Tiansheng Huang (30 papers)
  2. Weiwei Lin (33 papers)
  3. Li Shen (363 papers)
  4. Keqin Li (61 papers)
  5. Albert Y. Zomaya (50 papers)
Citations (81)

Summary

We haven't generated a summary for this paper yet.