Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Chiral de Rham complex on the upper half plane and modular forms (2011.07696v1)

Published 16 Nov 2020 in math.QA

Abstract: For any congruence subgroup $\Gamma$, we study the vertex operator algebra $\Omega{ch}(\mathbb H,\Gamma)$ constructed from the $\Gamma$-invariant global sections of the chiral de Rham complex on the upper half plane, which are holomorphic at all the cusps. We introduce an $SL(2,\mathbb R)$-invariant filtration on the global sections and show that the $\Gamma$-invariants on the graded algebra is isomorphic to certain copies of modular forms. We also give an explicit formula for the lifting of modular forms to $\Omega{ch}(\mathbb H,\Gamma)$ and compute the character formula of $\Omega{ch}(\mathbb H,\Gamma)$. Furthermore, we show that the vertex algebra structure modifies the Rankin-Cohen bracket, and the modified bracket becomes non-zero between constant modular forms involving the Eisenstein series.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.