Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Regularisation, optimisation, subregularity (2011.07575v3)

Published 15 Nov 2020 in math.OC

Abstract: Regularisation theory in Banach spaces, and non--norm-squared regularisation even in finite dimensions, generally relies upon Bregman divergences to replace norm convergence. This is comparable to the extension of first-order optimisation methods to Banach spaces. Bregman divergences can, however, be somewhat suboptimal in terms of descriptiveness. Using the concept of (strong) metric subregularity, previously used to prove the fast local convergence of optimisation methods, we show norm convergence in Banach spaces and for non--norm-squared regularisation. For problems such as total variation regularised image reconstruction, the metric subregularity reduces to a geometric condition on the ground truth: flat areas in the ground truth have to compensate for the fidelity term not having second-order growth within the kernel of the forward operator. Our approach to proving such regularisation results is based on optimisation formulations of inverse problems. As a side result of the regularisation theory that we develop, we provide regularisation complexity results for optimisation methods: how many steps $N_\delta$ of the algorithm do we have to take for the approximate solutions to converge as the corruption level $\delta \searrow 0$?

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.