Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sentiment Analysis for Sinhala Language using Deep Learning Techniques

Published 14 Nov 2020 in cs.CL and cs.LG | (2011.07280v1)

Abstract: Due to the high impact of the fast-evolving fields of machine learning and deep learning, NLP tasks have further obtained comprehensive performances for highly resourced languages such as English and Chinese. However Sinhala, which is an under-resourced language with a rich morphology, has not experienced these advancements. For sentiment analysis, there exists only two previous research with deep learning approaches, which focused only on document-level sentiment analysis for the binary case. They experimented with only three types of deep learning models. In contrast, this paper presents a much comprehensive study on the use of standard sequence models such as RNN, LSTM, Bi-LSTM, as well as more recent state-of-the-art models such as hierarchical attention hybrid neural networks, and capsule networks. Classification is done at document-level but with more granularity by considering POSITIVE, NEGATIVE, NEUTRAL, and CONFLICT classes. A data set of 15059 Sinhala news comments, annotated with these four classes and a corpus consists of 9.48 million tokens are publicly released. This is the largest sentiment annotated data set for Sinhala so far.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.