Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Content-based Image Retrieval and the Semantic Gap in the Deep Learning Era (2011.06490v1)

Published 12 Nov 2020 in cs.CV, cs.IR, and cs.MM

Abstract: Content-based image retrieval has seen astonishing progress over the past decade, especially for the task of retrieving images of the same object that is depicted in the query image. This scenario is called instance or object retrieval and requires matching fine-grained visual patterns between images. Semantics, however, do not play a crucial role. This brings rise to the question: Do the recent advances in instance retrieval transfer to more generic image retrieval scenarios? To answer this question, we first provide a brief overview of the most relevant milestones of instance retrieval. We then apply them to a semantic image retrieval task and find that they perform inferior to much less sophisticated and more generic methods in a setting that requires image understanding. Following this, we review existing approaches to closing this so-called semantic gap by integrating prior world knowledge. We conclude that the key problem for the further advancement of semantic image retrieval lies in the lack of a standardized task definition and an appropriate benchmark dataset.

Citations (12)

Summary

We haven't generated a summary for this paper yet.