Papers
Topics
Authors
Recent
2000 character limit reached

DeepSim: Semantic similarity metrics for learned image registration

Published 11 Nov 2020 in cs.CV and cs.LG | (2011.05735v1)

Abstract: We propose a semantic similarity metric for image registration. Existing metrics like euclidean distance or normalized cross-correlation focus on aligning intensity values, giving difficulties with low intensity contrast or noise. Our semantic approach learns dataset-specific features that drive the optimization of a learning-based registration model. Comparing to existing unsupervised and supervised methods across multiple image modalities and applications, we achieve consistently high registration accuracy and faster convergence than state of the art, and the learned invariance to noise gives smoother transformations on low-quality images.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.