Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Is Private Learning Possible with Instance Encoding? (2011.05315v2)

Published 10 Nov 2020 in cs.CR, cs.CV, and cs.LG

Abstract: A private machine learning algorithm hides as much as possible about its training data while still preserving accuracy. In this work, we study whether a non-private learning algorithm can be made private by relying on an instance-encoding mechanism that modifies the training inputs before feeding them to a normal learner. We formalize both the notion of instance encoding and its privacy by providing two attack models. We first prove impossibility results for achieving a (stronger) model. Next, we demonstrate practical attacks in the second (weaker) attack model on InstaHide, a recent proposal by Huang, Song, Li and Arora [ICML'20] that aims to use instance encoding for privacy.

Citations (38)

Summary

We haven't generated a summary for this paper yet.