Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Latent Dependency Model for Sequence Labeling (2011.05009v1)

Published 10 Nov 2020 in cs.LG

Abstract: Sequence labeling is a fundamental problem in machine learning, natural language processing and many other fields. A classic approach to sequence labeling is linear chain conditional random fields (CRFs). When combined with neural network encoders, they achieve very good performance in many sequence labeling tasks. One limitation of linear chain CRFs is their inability to model long-range dependencies between labels. High order CRFs extend linear chain CRFs by modeling dependencies no longer than their order, but the computational complexity grows exponentially in the order. In this paper, we propose the Neural Latent Dependency Model (NLDM) that models dependencies of arbitrary length between labels with a latent tree structure. We develop an end-to-end training algorithm and a polynomial-time inference algorithm of our model. We evaluate our model on both synthetic and real datasets and show that our model outperforms strong baselines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yang Zhou (311 papers)
  2. Yong Jiang (194 papers)
  3. Zechuan Hu (2 papers)
  4. Kewei Tu (74 papers)
Citations (1)