5D BPS Quivers and KK Towers (2011.04661v2)
Abstract: We explore BPS quivers for D=5 theories, compactified on a circle and geometrically engineered over local Calabi-Yau 3-folds, for which many of known machineries leading to (refined) indices fail due to the fine-tuning of the superpotential. For Abelian quivers, the counting reduces to a geometric one, but the technically challenging $L2$ cohomology proved to be essential for sensible BPS spectra. We offer a mathematical theorem to remedy the difficulty, but for non-Abelian quivers, the cohomology approach itself fails because the relevant wavefunctions are inherently gauge-theoretical. For the Cartan part of gauge multiplets, which suffers no wall-crossing, we resort to the D0 picture and reconstruct entire KK towers. We also perform numerical checks using a multi-center Coulombic routine, with a simple hypothesis on the quiver invariants, and extend this to electric BPS states in the weak coupling chamber. We close with a comment on known Donaldson-Thomas invariants and on how $L2$ index might be read off from these.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.