Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Robustness and Diversity Seeking Data-Free Knowledge Distillation (2011.03749v3)

Published 7 Nov 2020 in cs.LG, cs.CV, cs.SY, and eess.SY

Abstract: Knowledge distillation (KD) has enabled remarkable progress in model compression and knowledge transfer. However, KD requires a large volume of original data or their representation statistics that are not usually available in practice. Data-free KD has recently been proposed to resolve this problem, wherein teacher and student models are fed by a synthetic sample generator trained from the teacher. Nonetheless, existing data-free KD methods rely on fine-tuning of weights to balance multiple losses, and ignore the diversity of generated samples, resulting in limited accuracy and robustness. To overcome this challenge, we propose robustness and diversity seeking data-free KD (RDSKD) in this paper. The generator loss function is crafted to produce samples with high authenticity, class diversity, and inter-sample diversity. Without real data, the objectives of seeking high sample authenticity and class diversity often conflict with each other, causing frequent loss fluctuations. We mitigate this by exponentially penalizing loss increments. With MNIST, CIFAR-10, and SVHN datasets, our experiments show that RDSKD achieves higher accuracy with more robustness over different hyperparameter settings, compared to other data-free KD methods such as DAFL, MSKD, ZSKD, and DeepInversion.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.