Papers
Topics
Authors
Recent
2000 character limit reached

When Optimizing $f$-divergence is Robust with Label Noise (2011.03687v3)

Published 7 Nov 2020 in cs.LG and stat.ML

Abstract: We show when maximizing a properly defined $f$-divergence measure with respect to a classifier's predictions and the supervised labels is robust with label noise. Leveraging its variational form, we derive a nice decoupling property for a family of $f$-divergence measures when label noise presents, where the divergence is shown to be a linear combination of the variational difference defined on the clean distribution and a bias term introduced due to the noise. The above derivation helps us analyze the robustness of different $f$-divergence functions. With established robustness, this family of $f$-divergence functions arises as useful metrics for the problem of learning with noisy labels, which do not require the specification of the labels' noise rate. When they are possibly not robust, we propose fixes to make them so. In addition to the analytical results, we present thorough experimental evidence. Our code is available at https://github.com/UCSC-REAL/Robust-f-divergence-measures.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.