Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ridge Regression with Frequent Directions: Statistical and Optimization Perspectives (2011.03607v1)

Published 6 Nov 2020 in cs.LG, cs.DS, and stat.ML

Abstract: Despite its impressive theory & practical performance, Frequent Directions (\acrshort{fd}) has not been widely adopted for large-scale regression tasks. Prior work has shown randomized sketches (i) perform worse in estimating the covariance matrix of the data than \acrshort{fd}; (ii) incur high error when estimating the bias and/or variance on sketched ridge regression. We give the first constant factor relative error bounds on the bias & variance for sketched ridge regression using \acrshort{fd}. We complement these statistical results by showing that \acrshort{fd} can be used in the optimization setting through an iterative scheme which yields high-accuracy solutions. This improves on randomized approaches which need to compromise the need for a new sketch every iteration with speed of convergence. In both settings, we also show using \emph{Robust Frequent Directions} further enhances performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.