Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 Pro
2000 character limit reached

Saddle-center and periodic orbit: dynamics near symmetric heteroclinic connection (2011.03301v1)

Published 6 Nov 2020 in math.DS

Abstract: An analytic reversible Hamiltonian system with two degrees of freedom is studied in a neighborhood of its symmetric heteroclinic connection made up of a symmetric saddle-center, a symmetric orientable saddle periodic orbit lying in the same level of a Hamiltonian and two non-symmetric heteroclinic orbits permuted by the involution. This is a codimension one structure and therefore it can be met generally in one-parameter families of reversible Hamiltonian systems. There exist two possible types of such connections in dependence on how the involution acts near the equilibrium. We prove a series of theorems which show a chaotic behavior of the system and those in its unfoldings, in particular, the existence of countable sets of transverse homoclinic orbits to the saddle periodic orbit in the critical level, transverse heteroclinic connections involving a pair of saddle periodic orbits, families of elliptic periodic orbits, homoclinic tangencies, families of homoclinic orbits to saddle-centers in the unfolding, etc. As a byproduct, we get a criterion of the existence of homoclinic orbits to a saddle-center.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.