Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

New positivity bounds from full crossing symmetry (2011.02400v2)

Published 4 Nov 2020 in hep-th and hep-ph

Abstract: Positivity bounds are powerful tools to constrain effective field theories. Utilizing the partial wave expansion in the dispersion relation and the full crossing symmetry of the scattering amplitude, we derive several sets of generically nonlinear positivity bounds for a generic scalar effective field theory: We refer to these as the $PQ$, $D{\rm su}$, $D{\rm stu}$ and $\bar{D}{\rm stu}$ bounds. While the $PQ$ bounds and $D{\rm su}$ bounds only make use of the $s\leftrightarrow u$ dispersion relation, the $D{\rm stu}$ and $\bar{D}{\rm stu}$ bounds are obtained by further imposing the $s\leftrightarrow t$ crossing symmetry. In contradistinction to the linear positivity for scalars, these inequalities can be applied to put upper and lower bounds on Wilson coefficients, and are much more constraining as shown in the lowest orders. In particular we are able to exclude theories with soft amplitude behaviour such as weakly broken Galileon theories from admitting a standard UV completion. We also apply these bounds to chiral perturbation theory and we find these bounds are stronger than the previous bounds in constraining its Wilson coefficients.

Citations (124)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.