Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convolutional Proximal Neural Networks and Plug-and-Play Algorithms (2011.02281v1)

Published 4 Nov 2020 in math.OC, cs.LG, and eess.SP

Abstract: In this paper, we introduce convolutional proximal neural networks (cPNNs), which are by construction averaged operators. For filters of full length, we propose a stochastic gradient descent algorithm on a submanifold of the Stiefel manifold to train cPNNs. In case of filters with limited length, we design algorithms for minimizing functionals that approximate the orthogonality constraints imposed on the operators by penalizing the least squares distance to the identity operator. Then, we investigate how scaled cPNNs with a prescribed Lipschitz constant can be used for denoising signals and images, where the achieved quality depends on the Lipschitz constant. Finally, we apply cPNN based denoisers within a Plug-and-Play (PnP) framework and provide convergence results for the corresponding PnP forward-backward splitting algorithm based on an oracle construction.

Citations (52)

Summary

We haven't generated a summary for this paper yet.