Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Augmenting Images for ASR and TTS through Single-loop and Dual-loop Multimodal Chain Framework (2011.02099v1)

Published 4 Nov 2020 in cs.CL, cs.SD, and eess.AS

Abstract: Previous research has proposed a machine speech chain to enable automatic speech recognition (ASR) and text-to-speech synthesis (TTS) to assist each other in semi-supervised learning and to avoid the need for a large amount of paired speech and text data. However, that framework still requires a large amount of unpaired (speech or text) data. A prototype multimodal machine chain was then explored to further reduce the need for a large amount of unpaired data, which could improve ASR or TTS even when no more speech or text data were available. Unfortunately, this framework relied on the image retrieval (IR) model, and thus it was limited to handling only those images that were already known during training. Furthermore, the performance of this framework was only investigated with single-speaker artificial speech data. In this study, we revamp the multimodal machine chain framework with image generation (IG) and investigate the possibility of augmenting image data for ASR and TTS using single-loop and dual-loop architectures on multispeaker natural speech data. Experimental results revealed that both single-loop and dual-loop multimodal chain frameworks enabled ASR and TTS to improve their performance using an image-only dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Johanes Effendi (3 papers)
  2. Andros Tjandra (39 papers)
  3. Sakriani Sakti (41 papers)
  4. Satoshi Nakamura (94 papers)
Citations (3)