Papers
Topics
Authors
Recent
2000 character limit reached

Embedding Node Structural Role Identity into Hyperbolic Space

Published 3 Nov 2020 in cs.SI and cs.LG | (2011.01512v1)

Abstract: Recently, there has been an interest in embedding networks in hyperbolic space, since hyperbolic space has been shown to work well in capturing graph/network structure as it can naturally reflect some properties of complex networks. However, the work on network embedding in hyperbolic space has been focused on microscopic node embedding. In this work, we are the first to present a framework to embed the structural roles of nodes into hyperbolic space. Our framework extends struct2vec, a well-known structural role preserving embedding method, by moving it to a hyperboloid model. We evaluated our method on four real-world and one synthetic network. Our results show that hyperbolic space is more effective than euclidean space in learning latent representations for the structural role of nodes.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.