Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Machine Learning with Strategic Network Design: A Game-Theoretic Perspective (2011.01455v2)

Published 3 Nov 2020 in cs.GT

Abstract: This paper considers a game-theoretic framework for distributed machine learning problems over networks where the information acquisition at a node is modeled as a rational choice of a player. In the proposed game, players decide both the learning parameters and the network structure. The Nash equilibrium characterizes the tradeoff between the local performance and the global agreement of the learned classifiers. We first introduce a commutative approach which features a joint learning process that integrates the iterative learning at each node and the network formation. We show that our game is equivalent to a generalized potential game in the setting of undirected networks. We study the convergence of the proposed commutative algorithm, analyze the network structures determined by our game, and show the improvement of the social welfare in comparison with standard distributed learning over fixed networks. To adapt our framework to streaming data, we derive a distributed Kalman filter. A concurrent algorithm based on the online mirror descent algorithm is also introduced for solving for Nash equilibria in a holistic manner. In the case study, we use telemonitoring of Parkinson's disease to corroborate the results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.