Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Policies for the Homogeneous Selective Labels Problem (2011.01381v1)

Published 2 Nov 2020 in cs.LG and cs.AI

Abstract: Selective labels are a common feature of consequential decision-making applications, referring to the lack of observed outcomes under one of the possible decisions. This paper reports work in progress on learning decision policies in the face of selective labels. The setting considered is both a simplified homogeneous one, disregarding individuals' features to facilitate determination of optimal policies, and an online one, to balance costs incurred in learning with future utility. For maximizing discounted total reward, the optimal policy is shown to be a threshold policy, and the problem is one of optimal stopping. In contrast, for undiscounted infinite-horizon average reward, optimal policies have positive acceptance probability in all states. Future work stemming from these results is discussed.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Dennis Wei (64 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.