Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Policies for the Homogeneous Selective Labels Problem

Published 2 Nov 2020 in cs.LG and cs.AI | (2011.01381v1)

Abstract: Selective labels are a common feature of consequential decision-making applications, referring to the lack of observed outcomes under one of the possible decisions. This paper reports work in progress on learning decision policies in the face of selective labels. The setting considered is both a simplified homogeneous one, disregarding individuals' features to facilitate determination of optimal policies, and an online one, to balance costs incurred in learning with future utility. For maximizing discounted total reward, the optimal policy is shown to be a threshold policy, and the problem is one of optimal stopping. In contrast, for undiscounted infinite-horizon average reward, optimal policies have positive acceptance probability in all states. Future work stemming from these results is discussed.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.