Papers
Topics
Authors
Recent
2000 character limit reached

Singularity of sparse random matrices: simple proofs

Published 2 Nov 2020 in math.CO and math.PR | (2011.01291v2)

Abstract: Consider a random $n\times n$ zero-one matrix with "density" $p$, sampled according to one of the following two models: either every entry is independently taken to be one with probability $p$ (the "Bernoulli" model), or each row is independently uniformly sampled from the set of all length-$n$ zero-one vectors with exactly $pn$ ones (the "combinatorial" model). We give simple proofs of the (essentially best-possible) fact that in both models, if $\min(p,1-p)\geq (1+\varepsilon)\log n/n$ for any constant $\varepsilon>0$, then our random matrix is nonsingular with probability $1-o(1)$. In the Bernoulli model this fact was already well-known, but in the combinatorial model this resolves a conjecture of Aigner-Horev and Person.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.