Papers
Topics
Authors
Recent
Search
2000 character limit reached

Detecting Individuals with Depressive Disorder fromPersonal Google Search and YouTube History Logs

Published 28 Oct 2020 in cs.CY, cs.IR, and cs.LG | (2010.15670v1)

Abstract: Depressive disorder is one of the most prevalent mental illnesses among the global population. However, traditional screening methods require exacting in-person interviews and may fail to provide immediate interventions. In this work, we leverage ubiquitous personal longitudinal Google Search and YouTube engagement logs to detect individuals with depressive disorder. We collected Google Search and YouTube history data and clinical depression evaluation results from $212$ participants ($99$ of them suffered from moderate to severe depressions). We then propose a personalized framework for classifying individuals with and without depression symptoms based on mutual-exciting point process that captures both the temporal and semantic aspects of online activities. Our best model achieved an average F1 score of $0.77 \pm 0.04$ and an AUC ROC of $0.81 \pm 0.02$.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.