Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On non-gradient $(m,ρ)$-quasi-Einstein contact metric manifolds (2010.15150v1)

Published 28 Oct 2020 in math.DG

Abstract: Many authors have studied Ricci solitons and their analogs within the framework of (almost) contact geometry. In this article, we thoroughly study the $(m,\rho)$-quasi-Einstein structure on a contact metric manifold. First, we prove that if a $K$-contact or Sasakian manifold $M{2n+1}$ admits a closed $(m,\rho)$-quasi-Einstein structure, then it is an Einstein manifold of constant scalar curvature $2n(2n+1)$, and for the particular case -- a non-Sasakian $(k,\mu)$-contact structure -- it is locally isometric to the product of a Euclidean space $\RR{n+1}$ and a sphere $Sn$ of constant curvature $4$. Next, we prove that if a compact contact or $H$-contact metric manifold admits an $(m,\rho)$-quasi-Einstein structure, whose potential vector field $V$ is collinear to the Reeb vector field, then it is a $K$-contact $\eta$-Einstein manifold.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube