On non-gradient $(m,ρ)$-quasi-Einstein contact metric manifolds (2010.15150v1)
Abstract: Many authors have studied Ricci solitons and their analogs within the framework of (almost) contact geometry. In this article, we thoroughly study the $(m,\rho)$-quasi-Einstein structure on a contact metric manifold. First, we prove that if a $K$-contact or Sasakian manifold $M{2n+1}$ admits a closed $(m,\rho)$-quasi-Einstein structure, then it is an Einstein manifold of constant scalar curvature $2n(2n+1)$, and for the particular case -- a non-Sasakian $(k,\mu)$-contact structure -- it is locally isometric to the product of a Euclidean space $\RR{n+1}$ and a sphere $Sn$ of constant curvature $4$. Next, we prove that if a compact contact or $H$-contact metric manifold admits an $(m,\rho)$-quasi-Einstein structure, whose potential vector field $V$ is collinear to the Reeb vector field, then it is a $K$-contact $\eta$-Einstein manifold.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.