Papers
Topics
Authors
Recent
Search
2000 character limit reached

INT8 Winograd Acceleration for Conv1D Equipped ASR Models Deployed on Mobile Devices

Published 28 Oct 2020 in cs.SD, cs.CL, and eess.AS | (2010.14841v1)

Abstract: The intensive computation of Automatic Speech Recognition (ASR) models obstructs them from being deployed on mobile devices. In this paper, we present a novel quantized Winograd optimization pipeline, which combines the quantization and fast convolution to achieve efficient inference acceleration on mobile devices for ASR models. To avoid the information loss due to the combination of quantization and Winograd convolution, a Range-Scaled Quantization (RSQ) training method is proposed to expand the quantized numerical range and to distill knowledge from high-precision values. Moreover, an improved Conv1D equipped DFSMN (ConvDFSMN) model is designed for mobile deployment. We conduct extensive experiments on both ConvDFSMN and Wav2letter models. Results demonstrate the models can be effectively optimized with the proposed pipeline. Especially, Wav2letter achieves 1.48* speedup with an approximate 0.07% WER decrease on ARMv7-based mobile devices.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.