Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Social learning under inferential attacks (2010.13660v2)

Published 26 Oct 2020 in eess.SY and cs.SY

Abstract: A common assumption in the social learning literature is that agents exchange information in an unselfish manner. In this work, we consider the scenario where a subset of agents aims at driving the network beliefs to the wrong hypothesis. The adversaries are unaware of the true hypothesis. However, they will "blend in" by behaving similarly to the other agents and will manipulate the likelihood functions used in the belief update process to launch inferential attacks. We will characterize the conditions under which the network is misled. Then, we will explain that it is possible for such attacks to succeed by showing that strategies exist that can be adopted by the malicious agents for this purpose. We examine both situations in which the agents have minimal or no information about the network model.

Citations (5)

Summary

We haven't generated a summary for this paper yet.