Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Relative Hyperbolicity of Graphical Small Cancellation Groups (2010.13528v2)

Published 26 Oct 2020 in math.GR

Abstract: A piece of a labelled graph $\Gamma$ defined by D. Gruber is a labelled path that embeds into $\Gamma$ in two essentially different ways. We prove that graphical $Gr'(\frac{1}{6})$ small cancellation groups whose associated pieces have uniformly bounded length are relative hyperbolic. In fact, we show that the Cayley graph of such group presentation is asymptotically tree-graded with respect to the collection of all embedded components of the defining graph $\Gamma$, if and only if the pieces of $\Gamma$ are uniformly bounded. This implies the relative hyperbolicity by a result of C. Dru\c{t}u, D. Osin and M. Sapir.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.