Papers
Topics
Authors
Recent
2000 character limit reached

Understanding understanding: a renormalization group inspired model of (artificial) intelligence

Published 26 Oct 2020 in cs.AI, cs.LG, and hep-th | (2010.13482v1)

Abstract: This paper is about the meaning of understanding in scientific and in artificial intelligent systems. We give a mathematical definition of the understanding, where, contrary to the common wisdom, we define the probability space on the input set, and we treat the transformation made by an intelligent actor not as a loss of information, but instead a reorganization of the information in the framework of a new coordinate system. We introduce, following the ideas of physical renormalization group, the notions of relevant and irrelevant parameters, and discuss, how the different AI tasks can be interpreted along these concepts, and how the process of learning can be described. We show, how scientific understanding fits into this framework, and demonstrate, what is the difference between a scientific task and pattern recognition. We also introduce a measure of relevance, which is useful for performing lossy compression.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.