Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Does anatomical contextual information improve 3D U-Net based brain tumor segmentation? (2010.13460v3)

Published 26 Oct 2020 in eess.IV, cs.CV, and cs.LG

Abstract: Effective, robust, and automatic tools for brain tumor segmentation are needed for the extraction of information useful in treatment planning from magnetic resonance (MR) images. Context-aware artificial intelligence is an emerging concept for the development of deep learning applications for computer-aided medical image analysis. In this work, it is investigated whether the addition of contextual information from the brain anatomy in the form of white matter, gray matter, and cerebrospinal fluid masks and probability maps improves U-Net-based brain tumor segmentation. The BraTS2020 dataset was used to train and test two standard 3D U-Net models that, in addition to the conventional MR image modalities, used the anatomical contextual information as extra channels in the form of binary masks (CIM) or probability maps (CIP). A baseline model (BLM) that only used the conventional MR image modalities was also trained. The impact of adding contextual information was investigated in terms of overall segmentation accuracy, model training time, domain generalization, and compensation for fewer MR modalities available for each subject. Results show that there is no statistically significant difference when comparing Dice scores between the baseline model and the contextual information models, even when comparing performances for high- and low-grade tumors independently. Only in the case of compensation for fewer MR modalities available for each subject did the addition of anatomical contextual information significantly improve the segmentation of the whole tumor. Overall, there is no overall significant improvement in segmentation performance when using anatomical contextual information in the form of either binary masks or probability maps as extra channels.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.