Papers
Topics
Authors
Recent
2000 character limit reached

Hodge-Newton filtration for $p$-divisible groups with ramified endomorphism structure

Published 26 Oct 2020 in math.AG and math.NT | (2010.13293v2)

Abstract: Let $\mathcal{O}_K$ be a complete discrete valuation ring of mixed characteristic $(0,p)$ with perfect residue field. We prove the existence of the Hodge-Newton filtration for $p$-divisible groups over $\mathcal{O}_K$ with additional endomorphism structure for the ring of integers of a finite, possibly ramified field extension of $\mathbb{Q}_p$. The argument is based on the Harder-Narasimhan theory for finite flat group schemes over $\mathcal{O}_K$. In particular, we describe a sufficient condition for the existence of a filtration of $p$-divisible groups over $\mathcal{O}_K$ associated to a break point of the Harder-Narasimhan polygon.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.