Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Towards Dynamic-Point Systems on Metric Graphs with Longest Stabilization Time (2010.12528v3)

Published 23 Oct 2020 in cs.DM, math-ph, math.DS, and math.MP

Abstract: A dynamical system of points moving along the edges of a graph could be considered as a geometrical discrete dynamical system or as a discrete version of a quantum graph with localized wave packets. We study the set of such systems over metric graphs that can be constructed from a given set of commensurable edges with fixed lengths. It is shown that there always exists a system consisting of a bead graph with vertex degrees not greater than three that demonstrates the longest stabilization time in such a set. The results are extended to graphs with incommensurable edges using the notion of $\varepsilon$-nets and, also, it is shown that dynamical systems of points on linear graphs have the slowest growth of the number of dynamic points

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.