Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Topological Invariants of a Filling-Enforced Quantum Band Insulator (2010.12053v3)

Published 22 Oct 2020 in cond-mat.mes-hall and cond-mat.str-el

Abstract: Traditional ionic/covalent compound insulators arise from a commensuration between electron count and system volume. On the other hand, conventional topological insulators, outside of quantum hall effect systems, do not typically display such a commensuration. Tnstead, they can undergo a phase transition to a trivial insulator that preserves the electron filling. Nevertheless, in some crystalline insulators, termed filling-enforced quantum band insulators (feQBIs), electron filling can dictate nontrivial topology in the insulating ground state. Currently, little is known about the relation between feQBIs and conventional topological invariants. In this work, we study such relations for a particularly interesting example of a half-filling feQBI that is realized in space group 106 with spinless electrons. We prove that any 4-band feQBI in space group 106 with filling 2 must have a nontrivial topological invariant, namely the $\mathbb{Z}_2$ glide invariant, and thus must have a quantized magnetoelectric polarizability $\theta=\pi$. We thus have found a three-dimensional example where electron filling and band topology are tied. Such a locking raises intriguing questions about the generality of the band-inversion paradigm in describing the transition between trivial and topological phases.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.