Papers
Topics
Authors
Recent
2000 character limit reached

Posterior Re-calibration for Imbalanced Datasets (2010.11820v1)

Published 22 Oct 2020 in cs.LG

Abstract: Neural Networks can perform poorly when the training label distribution is heavily imbalanced, as well as when the testing data differs from the training distribution. In order to deal with shift in the testing label distribution, which imbalance causes, we motivate the problem from the perspective of an optimal Bayes classifier and derive a post-training prior rebalancing technique that can be solved through a KL-divergence based optimization. This method allows a flexible post-training hyper-parameter to be efficiently tuned on a validation set and effectively modify the classifier margin to deal with this imbalance. We further combine this method with existing likelihood shift methods, re-interpreting them from the same Bayesian perspective, and demonstrating that our method can deal with both problems in a unified way. The resulting algorithm can be conveniently used on probabilistic classification problems agnostic to underlying architectures. Our results on six different datasets and five different architectures show state of art accuracy, including on large-scale imbalanced datasets such as iNaturalist for classification and Synthia for semantic segmentation. Please see https://github.com/GT-RIPL/UNO-IC.git for implementation.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

GitHub