Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identification of deep breath while moving forward based on multiple body regions and graph signal analysis (2010.11734v1)

Published 20 Oct 2020 in cs.CV, cs.MM, cs.SY, and eess.SY

Abstract: This paper presents an unobtrusive solution that can automatically identify deep breath when a person is walking past the global depth camera. Existing non-contact breath assessments achieve satisfactory results under restricted conditions when human body stays relatively still. When someone moves forward, the breath signals detected by depth camera are hidden within signals of trunk displacement and deformation, and the signal length is short due to the short stay time, posing great challenges for us to establish models. To overcome these challenges, multiple region of interests (ROIs) based signal extraction and selection method is proposed to automatically obtain the signal informative to breath from depth video. Subsequently, graph signal analysis (GSA) is adopted as a spatial-temporal filter to wipe the components unrelated to breath. Finally, a classifier for identifying deep breath is established based on the selected breath-informative signal. In validation experiments, the proposed approach outperforms the comparative methods with the accuracy, precision, recall and F1 of 75.5%, 76.2%, 75.0% and 75.2%, respectively. This system can be extended to public places to provide timely and ubiquitous help for those who may have or are going through physical or mental trouble.

Citations (3)

Summary

We haven't generated a summary for this paper yet.