Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vocal Breath Sound Based Gender Classification (2211.06371v2)

Published 11 Nov 2022 in eess.AS

Abstract: Voiced speech signals such as continuous speech are known to have acoustic features such as pitch(F0), and formant frequencies(F1, F2, F3) which can be used for gender classification. However, gender classification studies using non-speech signals such as vocal breath sounds have not been explored as they lack typical gender-specific acoustic features. In this work, we explore whether vocal breath sounds encode gender information and if so, to what extent it can be used for automatic gender classification. In this study, we explore the use of data-driven and knowledge-based features from vocal breath sounds as well as the classifier complexity for gender classification. We also explore the importance of the location and duration of breath signal segments to be used for automatic classification. Experiments with 54.23 minutes of male and 51.83 minutes of female breath sounds reveal that knowledge-based features, namely MFCC statistics, with low-complexity classifier perform comparably to the data-driven features with classifiers of higher complexity. Breath segments with an average duration of 3 seconds are found to be the best choice irrespective of the location which avoids the need for breath cycle boundary annotation.

Summary

We haven't generated a summary for this paper yet.