Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A 4-Approximation of the $\frac{2π}{3}$-MST (2010.11571v1)

Published 22 Oct 2020 in cs.CG

Abstract: Bounded-angle (minimum) spanning trees were first introduced in the context of wireless networks with directional antennas. They are reminiscent of bounded-degree spanning trees, which have received significant attention. Let $P = {p_1,\ldots,p_n}$ be a set of $n$ points in the plane, let $\Pi$ be the polygonal path $(p_1,\ldots,p_n)$, and let $0 < \alpha < 2\pi$ be an angle. An $\alpha$-spanning tree ($\alpha$-ST) of $P$ is a spanning tree of the complete Euclidean graph over $P$, with the following property: For each vertex $p_i \in P$, the (smallest) angle that is spanned by all the edges incident to $p_i$ is at most $\alpha$. An $\alpha$-minimum spanning tree ($\alpha$-MST) is an $\alpha$-ST of $P$ of minimum weight, where the weight of an $\alpha$-ST is the sum of the lengths of its edges. In this paper, we consider the problem of computing an $\alpha$-MST, for the important case where $\alpha = \frac{2\pi}{3}$. We present a simple 4-approximation algorithm, thus improving upon the previous results of Aschner and Katz and Biniaz et al., who presented algorithms with approximation ratios 6 and $\frac{16}{3}$, respectively. In order to obtain this result, we devise a simple $O(n)$-time algorithm for constructing a $\frac{2\pi}{3}$-ST\, ${\cal T}$ of $P$, such that ${\cal T}$'s weight is at most twice that of $\Pi$ and, moreover, ${\cal T}$ is a 3-hop spanner of $\Pi$. This latter result is optimal in the sense that for any $\varepsilon > 0$ there exists a polygonal path for which every $\frac{2\pi}{3}$-ST has weight greater than $2-\varepsilon$ times the weight of the path.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Stav Ashur (11 papers)
  2. Matthew J. Katz (25 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.