Papers
Topics
Authors
Recent
2000 character limit reached

Deep Learning for Efficient Reconstruction of High-Resolution Turbulent DNS Data

Published 21 Oct 2020 in physics.flu-dyn and cs.LG | (2010.11348v2)

Abstract: Within the domain of Computational Fluid Dynamics, Direct Numerical Simulation (DNS) is used to obtain highly accurate numerical solutions for fluid flows. However, this approach for numerically solving the Navier-Stokes equations is extremely computationally expensive mostly due to the requirement of greatly refined grids. Large Eddy Simulation (LES) presents a more computationally efficient approach for solving fluid flows on lower-resolution (LR) grids but results in an overall reduction in solution fidelity. Through this paper, we introduce a novel deep learning framework SR-DNS Net, which aims to mitigate this inherent trade-off between solution fidelity and computational complexity by leveraging deep learning techniques used in image super-resolution. Using our model, we wish to learn the mapping from a coarser LR solution to a refined high-resolution (HR) DNS solution so as to eliminate the need for performing DNS on highly refined grids. Our model efficiently reconstructs the high-fidelity DNS data from the LES like low-resolution solutions while yielding good reconstruction metrics. Thus our implementation improves the solution accuracy of LR solutions while incurring only a marginal increase in computational cost required for deploying the trained deep learning model.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.