Papers
Topics
Authors
Recent
2000 character limit reached

BMS algebras in 4 and 3 dimensions, their quantum deformations and duals (2010.10224v3)

Published 20 Oct 2020 in hep-th, gr-qc, math-ph, and math.MP

Abstract: BMS symmetry is a symmetry of asymptotically flat spacetimes in the vicinity of the null boundary of spacetime and it is expected to play a fundamental role in physics. It is interesting therefore to investigate the structures and properties of quantum deformations of these symmetries, which are expected to shed some light on symmetries of quantum spacetime. In this paper we discuss the structure of the algebra of extended BMS symmetries in 3 and 4 spacetime dimensions, realizing that these algebras contain an infinite number of distinct Poincar\'e subalgebras, a fact that has previously been noted in the 3-dimensional case only. Then we use these subalgebras to construct an infinite number of different Hopf algebras being quantum deformations of the BMS algebras. We also discuss different types of twist-deformations and the dual Hopf algebras, which could be interpreted as noncommutative, extended quantum spacetimes.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.