Papers
Topics
Authors
Recent
Search
2000 character limit reached

Not Judging a User by Their Cover: Understanding Harm in Multi-Modal Processing within Social Media Research

Published 19 Oct 2020 in cs.SI | (2010.09768v1)

Abstract: Social media has shaken the foundations of our society, unlikely as it may seem. Many of the popular tools used to moderate harmful digital content, however, have received widespread criticism from both the academic community and the public sphere for middling performance and lack of accountability. Though social media research is thought to center primarily on natural language processing, we demonstrate the need for the community to understand multimedia processing and its unique ethical considerations. Specifically, we identify statistical differences in the performance of Amazon Turk (MTurk) annotators when different modalities of information are provided and discuss the patterns of harm that arise from crowd-sourced human demographic prediction. Finally, we discuss the consequences of those biases through auditing the performance of a toxicity detector called Perspective API on the language of Twitter users across a variety of demographic categories.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.