Papers
Topics
Authors
Recent
2000 character limit reached

DeHiDe: Deep Learning-based Hybrid Model to Detect Fake News using Blockchain

Published 17 Oct 2020 in cs.LG | (2010.08765v1)

Abstract: The surge in the spread of misleading information, lies, propaganda, and false facts, frequently known as fake news, raised questions concerning social media's influence in today's fast-moving democratic society. The widespread and rapid dissemination of fake news cost us in many ways. For example, individual or societal costs by hampering elections integrity, significant economic losses by impacting stock markets, or increases the risk to national security. It is challenging to overcome the spreading of fake news problems in traditional centralized systems. However, Blockchain-- a distributed decentralized technology that ensures data provenance, authenticity, and traceability by providing a transparent, immutable, and verifiable transaction records can help in detecting and contending fake news. This paper proposes a novel hybrid model DeHiDe: Deep Learning-based Hybrid Model to Detect Fake News using Blockchain. The DeHiDe is a blockchain-based framework for legitimate news sharing by filtering out the fake news. It combines the benefit of blockchain with an intelligent deep learning model to reinforce robustness and accuracy in combating fake news's hurdle. It also compares the proposed method to existing state-of-the-art methods. The DeHiDe is expected to outperform state-of-the-art approaches in terms of services, features, and performance.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.