Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of professional basketball field goal attempts via a Bayesian matrix clustering approach (2010.08495v1)

Published 16 Oct 2020 in stat.ME, stat.AP, and stat.CO

Abstract: We propose a Bayesian nonparametric matrix clustering approach to analyze the latent heterogeneity structure in the shot selection data collected from professional basketball players in the National Basketball Association (NBA). The proposed method adopts a mixture of finite mixtures framework and fully utilizes the spatial information via a mixture of matrix normal distribution representation. We propose an efficient Markov chain Monte Carlo algorithm for posterior sampling that allows simultaneous inference on both the number of clusters and the cluster configurations. We also establish large sample convergence properties for the posterior distribution. The excellent empirical performance of the proposed method is demonstrated via simulation studies and an application to shot chart data from selected players in the 2017 18 NBA regular season.

Summary

We haven't generated a summary for this paper yet.