Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Detecting ESG topics using domain-specific language models and data augmentation approaches (2010.08319v1)

Published 16 Oct 2020 in cs.CL, cs.IR, and cs.LG

Abstract: Despite recent advances in deep learning-based language modelling, many NLP tasks in the financial domain remain challenging due to the paucity of appropriately labelled data. Other issues that can limit task performance are differences in word distribution between the general corpora - typically used to pre-train LLMs - and financial corpora, which often exhibit specialized language and symbology. Here, we investigate two approaches that may help to mitigate these issues. Firstly, we experiment with further LLM pre-training using large amounts of in-domain data from business and financial news. We then apply augmentation approaches to increase the size of our dataset for model fine-tuning. We report our findings on an Environmental, Social and Governance (ESG) controversies dataset and demonstrate that both approaches are beneficial to accuracy in classification tasks.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.