Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Guided Data Discovery in Interactive Visualizations via Active Search (2010.08155v5)

Published 16 Oct 2020 in cs.HC

Abstract: Recent advances in visual analytics have enabled us to learn from user interactions and uncover analytic goals. These innovations set the foundation for actively guiding users during data exploration. Providing such guidance will become more critical as datasets grow in size and complexity, precluding exhaustive investigation. Meanwhile, the machine learning community also struggles with datasets growing in size and complexity, precluding exhaustive labeling. Active learning is a broad family of algorithms developed for actively guiding models during training. We will consider the intersection of these analogous research thrusts. First, we discuss the nuances of matching the choice of an active learning algorithm to the task at hand. This is critical for performance, a fact we demonstrate in a simulation study. We then present results of a user study for the particular task of data discovery guided by an active learning algorithm specifically designed for this task.

Citations (6)

Summary

We haven't generated a summary for this paper yet.