Characteristic determinant and Manakov triple for the double elliptic integrable system (2010.08077v4)
Abstract: Using the intertwining matrix of the IRF-Vertex correspondence we propose a determinant representation for the generating function of the commuting Hamiltonians of the double elliptic integrable system. More precisely, it is a ratio of the normally ordered determinants, which turns into a single determinant in the classical case. With its help we reproduce the recently suggested expression for the eigenvalues of the Hamiltonians for the dual to elliptic Ruijsenaars model. Next, we study the classical counterpart of our construction, which gives expression for the spectral curve and the corresponding $L$-matrix. This matrix is obtained explicitly as a weighted average of the Ruijsenaars and/or Sklyanin type Lax matrices with the weights as in the theta function series definition. By construction the $L$-matrix satisfies the Manakov triple representation instead of the Lax equation. Finally, we discuss the factorized structure of the $L$-matrix.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.