Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Importance of Domain Model Configuration for Automated Planning Engines (2010.07710v1)

Published 15 Oct 2020 in cs.AI

Abstract: The development of domain-independent planners within the AI Planning community is leading to "off-the-shelf" technology that can be used in a wide range of applications. Moreover, it allows a modular approach --in which planners and domain knowledge are modules of larger software applications-- that facilitates substitutions or improvements of individual modules without changing the rest of the system. This approach also supports the use of reformulation and configuration techniques, which transform how a model is represented in order to improve the efficiency of plan generation. In this article, we investigate how the performance of domain-independent planners is affected by domain model configuration, i.e., the order in which elements are ordered in the model, particularly in the light of planner comparisons. We then introduce techniques for the online and offline configuration of domain models, and we analyse the impact of domain model configuration on other reformulation approaches, such as macros.

Citations (7)

Summary

We haven't generated a summary for this paper yet.