Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Mixture Models for Photometric Redshifts (2010.07319v1)

Published 14 Oct 2020 in astro-ph.CO and astro-ph.IM

Abstract: Determining photometric redshifts to high accuracy is paramount to measure distances in wide-field cosmological experiments. With only photometric information at hand, photo-zs are prone to systematic uncertainties in the intervening extinction and the unknown underlying spectral-energy distribution of different astrophysical sources. Here, we aim to resolve these model degeneracies and obtain a clear separation between intrinsic physical properties of astrophysical sources and extrinsic systematics. We aim at estimates of the full photo-z probability distributions, and their uncertainties. We perform a probabilistic photo-z determination using Mixture Density Networks (MDN). The training data-set is composed of optical ($griz$) point-spread-function and model magnitudes and extinction measurements from the SDSS-DR15, and WISE midinfrared ($3.4 \mu$m and $4.6 \mu$m) model magnitudes. We use Infinite Gaussian Mixture models to classify the objects in our data-set as stars, galaxies or quasars, and to determine the number of MDN components to achieve optimal performance. The fraction of objects that are correctly split into the main classes is 94%. Our method improves the bias of photometric redshift estimation (i.e. the mean $\Delta z$ = (zp - zs)/(1 + zs)) by one order of magnitude compared to the SDSS photo-z, and decreases the fraction of $3 \sigma$ outliers (i.e. 3rms$(\Delta z) < \Delta z$). The relative, root-mean-square systematic uncertainty in our resulting photo-zs is down to 1.7% for low-redshift galaxies (zs $<$ 0.5). We have demonstrated the feasibility of machine-learning based methods that produce full probability distributions for photo-z estimates with a performance that is competitive with state-of-the art techniques. Our method can be applied to wide-field surveys where extinction can vary significantly across the sky and with sparse spectroscopic calibration samples.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube