Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Primitive Elements of the Hopf Algebras of Tableaux (2010.06731v1)

Published 13 Oct 2020 in math.CO and math.RT

Abstract: The character theory of symmetric groups, and the theory of symmetric functions, both make use of the combinatorics of Young tableaux, such as the Robinson-Schensted algorithm, Schuetzenberger's "jeu de taquin", and evacuation. In 1995 Poirier and the second author introduced some algebraic structures, different from the plactic monoid, which induce some products and coproducts of tableaux, with homomorphisms. Their starting point are the two dual Hopf algebras of permutations, introduced by the authors in 1995. In 2006 Aguiar and Sottile studied in more detail the Hopf algebra of permutations: among other things, they introduce a new basis, by Moebius inversion in the poset of weak order, that allows them to describe the primitive elements of the Hopf algebra of permutations. In the present note, by a similar method, we determine the primitive elements of the Poirier-Reutenauer algebra of tableaux, using a partial order on tableaux defined by Taskin.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.